Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 111
1.
Mycopathologia ; 189(2): 29, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483637

The emerging pathogen Trichophyton indotineae, often resistant to terbinafine (TRB), is known to cause severe dermatophytoses such as tinea corporis and tinea cruris. In order to achieve successful treatment for these infections, insight in the resistance profile of T. indotineae strains and rapid, reliable identification is necessary. In this research, a screening medium was tested on T. indotineae strains (n = 20) as an indication tool of TRB resistance. The obtained results were confirmed by antifungal susceptibility testing (AST) for TRB following the in vitro broth microdilution reference method. Additionally, AST was performed for eight other antifungal drugs: fluconazole, itraconazole, voriconazole, ketoconazole, griseofulvin, ciclopirox olamine, naftifine and amorolfine. Forty-five percent of the strains were confirmed to be resistant to terbinafine. The TRB resistant strains showed elevated minimal inhibitory concentration values for naftifine and amorolfine as well. DNA sequencing of the squalene epoxidase-encoding gene showed that TRB resistance was a consequence of missense point mutations in this gene, which led to amino acid substitutions F397L or L393F. MALDI-TOF MS was used as a quick, accurate identification tool for T. indotineae, as it can be challenging to distinguish it from closely related species such as Trichophyton mentagrophytes or Trichophyton interdigitale using morphological characteristics. While MALDI-TOF MS could reliably identify ≥ 95% of the T. indotineae strains (depending on the spectral library), it could not be used to successfully distinguish TRB susceptible from TRB resistant strains.


Allylamine/analogs & derivatives , Antifungal Agents , Arthrodermataceae , Terbinafine/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trichophyton/genetics , Arthrodermataceae/genetics , Microbial Sensitivity Tests , Drug Resistance, Fungal/genetics
2.
Mycoses ; 67(4): e13718, 2024 Apr.
Article En | MEDLINE | ID: mdl-38551112

BACKGROUND: Dermatomycoses count to the most frequent dermatoses in Cambodia. OBJECTIVES: The aim of this survey was to investigate the occurrence of dermatophytes in this Southeast Asian country. METHODS: From June 2017 to July 2018, skin scrapings were taken from 67 patients with superficial dermatophytosis for mycological diagnostics. Identification of dermatophytes was confirmed by sequencing of the 'internal transcribed spacer'-(ITS) region of the rDNA, and the gene of the Translation Elongation Factor (TEF)-1α. RESULTS: Patients were suffering from tinea corporis and tinea inguinalis/cruris 42/67 (63%), tinea capitis/faciei 14/67 (21%), tinea corporis/capitis/faciei 6/67 (9%), tinea manuum/pedis 2/67 (3%), tinea pedis 2/67 (3%) and tinea manuum 1/67 (1%). Both, by culture and/or PCR, a dermatophyte was detected in 52 (78%) out of 67 samples. Culture positive were 42 (81%) of 52, PCR positive were 50 (96%). The following dermatophytes were found: Trichophyton (T.) rubrum, 36/52 strains (69%, 29 by culture), T. mentagrophytes/T. interdigitale (TM/TI) 9/52 (17%, six by culture) and Microsporum (M.) canis 5/52 strains (10%, by culture). One strain of Nannizzia (N.) incurvata 1/52 (2%) and N. nana 1/52 (2%) was isolated. Based on sequencing, we demonstrated that two T. mentagrophytes strains out of the nine TM/TI represented the new ITS genotype XXV Cambodia. We found one T. mentagrophytes strain genotype VIII (now, reclassified as T. indotineae). This isolate was terbinafine resistant, and it exhibited the amino acid substitution Phe397Leu in the squalene epoxidase. Three strains of T. interdigitale genotype II* were isolated. CONCLUSION: This is the first survey on epidemiology of dermatophytes in Cambodia. Currently, T. rubrum represents the most frequent species in Cambodia. One Indian strain genotype VIII T. mentagrophytes was found. A highlight was the first description of the new T. mentagrophytes genotype XXV Cambodia.


Arthrodermataceae , Dermatomycoses , Hand Dermatoses , Tinea , Humans , Cambodia/epidemiology , Tinea/epidemiology , Trichophyton , Tinea Pedis/epidemiology , Dermatomycoses/epidemiology
4.
Dermatologie (Heidelb) ; 75(1): 48-54, 2024 Jan.
Article De | MEDLINE | ID: mdl-38189829

In the course of globalization, migration and global warming, we are increasingly confronted with pathogens that do not occur naturally in our latitudes or appear in a different form. We know keratinophilic dermatophytes as the cause of tinea pedis, onychomycosis and also tinea corporis and capitis. Transmission usually occurs via domestic or farm animals and via autoinoculation. In recent years dermatophytes have gained additional importance as a possible sexually transmitted disease between immunocompetent persons. For the first time, dermatophytosis was described as a sexually transmitted infection in travelers who developed pronounced pubogenital or anogenital tinea after travelling in Southeast Asia, including Thailand, mostly after intensive sexual contact. Molecular and cultural analyses have identified Trichophyton (T.) mentagrophytes ITS (internal transcribed spacer) genotype VII as the main pathogen. Although this dermatophyte genotypically belongs to the zoophilic complex, direct (sexual) and occasionally indirect human-to-human contact with infected persons is suspected to be the current route of transmission. The infection can lead to inflammatory and purulent dermatophytosis, causing a high level of suffering. In this respect, a rapid and reliable diagnosis is essential in order to be able to initiate targeted treatment. The discovery of infection pathways and the awareness of the need to take rare diseases into account in our everyday lives will increasingly accompany us over the next few years and present us with new challenges, particularly in terms of prevention and treatment.


Arthrodermataceae , Onychomycosis , Animals , Humans , Trichophyton/genetics , Genotype
6.
Dermatologie (Heidelb) ; 75(3): 238-252, 2024 Mar.
Article De | MEDLINE | ID: mdl-38095686

Dermatophyte identification using traditional methods such as optics-based direct fluorescence microscopy and culture is nowadays supplemented by molecular biological methods. The validity of dermatophyte DNA detection with direct uniplex-polymerase chain reaction-enzyme immunoassay (PCR-EIA) in nail samples was proven by sequence analysis of the ribosomal internal transcribed spacer (ITS) region. A total of 108 dermatophytes, isolated from patients with onychomycosis, were positive for Trichophyton rubrum (TR) and Trichophyton interdigitale (TI) in culture and/or uniplex-PCR-EIA. Conventional methods for dermatophyte identification were complemented by direct uniplex-PCR-EIA and sequence analysis of the ribosomal ITS region (18S rRNA, ITS1, 5.8S rRNA, ITS2, 28S rRNA). Of 108 patients (average age 62, median age 73), 56 showed cultural growth with 31 of them being identified as TR and 23 as TI. There was high agreement with the sequence analysis. Surprisingly, the pathogen of a single nail sample was identified as T. quinckeanum (formerly T. mentagrophytes sensu stricto), a rare zoophilic dermatophyte in Germany. A single TI strain turned out to be a misidentified T. tonsurans based on the sequence analysis. In all, 34 of the 52 specimens lacking cultural growth were detected by PCR as TR, and 18 specimens could be identified as TI. The results of dermatophyte identification of culture-negative nail samples were also in agreement with the results of sequence analysis. Molecular biological methods are well applicable, and they show high reliability for direct dermatophyte identification in nail samples without prior cultivation. Especially for nail samples without cultural growth, PCR-based dermatophyte identification was highly specific and sensitive.


Arthrodermataceae , Onychomycosis , Humans , Middle Aged , Aged , Onychomycosis/diagnosis , Arthrodermataceae/genetics , Trichophyton/genetics , DNA, Ribosomal , Pathology, Molecular , Reproducibility of Results , Polymerase Chain Reaction/methods , DNA, Fungal/genetics , Microscopy, Fluorescence , Sequence Analysis
7.
Dermatologie (Heidelb) ; 75(2): 134-146, 2024 Feb.
Article De | MEDLINE | ID: mdl-38066287

Onychomycosis is a common infectious nail disease occurring worldwide. The mycological diagnosis of onychomycosis is primarily used for differential diagnostic differentiation from other, mostly inflammatory nail diseases, such as nail psoriasis or onychodystrophies of other causes. Conventional laboratory diagnostics when onychomycosis is suspected is based on microscopic detection of fungi in the nail material using fluorescence-optical potassium hydroxide preparations and culture of the pathogen. Molecular amplification methods allow a more sensitive and specific identification of the causative dermatophyte. Here, in 108 patients with onychomycosis, the dermatophytes were identified by culture and/or molecular biology using polymerase chain reaction (PCR) and the species identification was confirmed with subsequent sequencing. The dermatophytes were analyzed based on macromorphological and microscopic features. A dermatophyte was cultured in 56 of the 108 patients. Among them were 31 isolates of Trichophyton (T.) rubrum and 25 of T. interdigitale. All species identifications were subsequently confirmed by rDNA sequencing with concordant results in 54 of 56 patients. Two primarily as T. interdigitale identified specimens were revealed to be T. quinckeanum and T. tonsurans by molecular methods. T. quinckeanum, which is a zoophilic dermatophyte and a so-called emerging pathogen in dermatomycology, was isolated here for the first time as the causative agent of onychomycosis. The other dermatophyte, initially thought to be T. interdigitale, turned out to be T. tonsurans on molecular biology. This anthropophilic dermatophyte is also a rarity in onychomycosis. In addition, T. rubrum was identified by PCR in 34 of the 52 nail specimens that did not grow culture, and T. interdigitale in 18 nail specimens. However, the morphological identification of the four different dermatophytes species proved problematic. Neither the colony morphology nor the microscopic features of the dermatophytes allow clear differentiation of the pathogens. Microconidia, macroconidia, chlamydospores, and arthrospores are inconsistent in occurrence, number, microscopic distribution, and shape. The urease activity also did not allow an assignment of the dermatophyte species. These results indicate that the most sensitive detection and reliable identification of causative dermatophytes in onychomycosis is only possible by molecular methods.


Arthrodermataceae , Nail Diseases , Onychomycosis , Humans , Onychomycosis/diagnosis , Arthrodermataceae/genetics , Pathology, Molecular
8.
Mycoses ; 67(1): e13675, 2024 Jan.
Article En | MEDLINE | ID: mdl-37983862

Kerion Celsi is an inflammatory, deep fungal infection of the scalp. It is rare in neonates but gets more common in children about 3 years and older. It represents with swelling, boggy lesions, pain, alopecia and purulent secretions. Secondary bacterial infection is not unusual after maceration. Extracutaneous manifestations include regional lymphadenopathy, fever and very rare fungemia. Id-reactions can occur. Diagnosis is based on clinical suspicion, clinical examination and medical history. Diagnosis should be confirmed by microscopy, fungal culture and molecular procedures. The most common isolated fungal species are anthropophilic Trichophyton (T.) tonsurans and zoophilic Microsporum (M.) canis, while geophilic species and moulds rarely cause Kerion Celsi. Treatment is medical with systemic and topical antifungals supplemented by systemic antibiotics when necessary, while surgery needs to be avoided. Early and sufficient treatment prevents scarring alopecia. The most important differential diagnosis is bacterial skin and soft tissue infections.


Tinea Capitis , Child , Infant , Infant, Newborn , Humans , Tinea Capitis/diagnosis , Tinea Capitis/drug therapy , Tinea Capitis/microbiology , Trichophyton , Microsporum , Skin/pathology , Alopecia/diagnosis , Alopecia/drug therapy , Alopecia/etiology
9.
Dermatologie (Heidelb) ; 74(11): 864-873, 2023 Nov.
Article De | MEDLINE | ID: mdl-37823916

For more than 30 years, an 82-year-old man has been suffering from tinea corporis generalisata in the sense of Trichophyton rubrum syndrome. The patient received long-term treatment with terbinafine. Fluconazole had no effect. There was an increase in liver enzymes with itraconazole. Super bioavailability (SUBA) itraconazole was initially not tolerated. A therapy attempt with voriconazole was successful, but was stopped due to side effects. The Trichophyton (T.) rubrum strain isolated from skin scales was tested for terbinafine resistance using the breakpoint method and found to be (still) sensitive. Sequencing of the squalene epoxidase (SQLE) gene revealed a previously unknown point mutation of the codon for isoleucine ATC→ACC with amino acid substitution I479T (isoleucine479 threonine). Long-term therapy with terbinafine 250 mg had been given every 3 days since 2018. In addition, bifonazole cream, ciclopirox solution, and occasionally terbinafine cream were used. The skin condition was stable until an exacerbation of the dermatophytosis in 2021. There were erythematosquamous, partly atrophic, centrifugal, scaly, confluent plaques on the integument and the extremities. Fingernails and toenails had white to yellow-brown discoloration, and were hyperkeratotic and totally dystrophic. T. rubrum was cultured from skin scales from the integument, from the feet, from nail shavings from the fingernails and also toenails and detected by PCR. In the breakpoint test, the T. rubrum isolates from tinea corporis and nail samples showed a minimum inhibitory concentration (MIC) of 0.5 µg ml-1 (terbinafine resistance in vitro). Sequencing of the SQLE gene of the T. rubrum isolate revealed evidence of a further point mutation that led to amino acid substitution I479V (isoleucine 479 valine). Long-term therapy was started with SUBA itraconazole: 14 days 2â€¯× 1 capsule daily, then twice weekly administration of 2â€¯× 50 mg. During breaks in therapy, the mycosis regularly flared up again. Finally, 50 mg SUBA itraconazole was given 5 days a week, which completely suppressed the dermatophytosis. Topically, ciclopirox and miconazole cream were used alternately. In conclusion, in the case of recurrent and therapy-refractory dermatophytoses caused by T. rubrum, terbinafine resistance must also be considered in individual cases. An in vitro resistance test and point mutation analysis of the squalene epoxidase gene confirms the diagnosis. Itraconazole, also in the form of SUBA itraconazole, is the drug of choice for the oral antifungal treatment of these patients.


Itraconazole , Tinea , Male , Humans , Aged, 80 and over , Terbinafine/pharmacology , Itraconazole/pharmacology , Ciclopirox/therapeutic use , Squalene Monooxygenase/genetics , Biological Availability , Isoleucine/metabolism , Tinea/drug therapy
11.
Dermatologie (Heidelb) ; 74(6): 430-439, 2023 Jun.
Article De | MEDLINE | ID: mdl-37133787

During the coronavirus pandemic, significantly more pets were probably bought and kept. This study focuses on whether more zoophilic dermatophytes have subsequently been isolated and which species predominate. In the 1­year period from March 2020 through February 2021, all zoophilic dermatophytes from all submissions to the Mölbis laboratory were recorded. Both the cultural and the molecular evidence of fungal detection from skin scrapings, hair roots, and, in single cases, from nails, were considered. For dermatophyte DNA (Deoxyribonucleic acid) detection, an in-house polymerase chain reaction (PCR) - enzyme-linked immunosorbent assay (ELISA) was used. In distinct cases, identification of dermatophytes was confirmed by sequencing of the internal transcribed spacer (ITS) region of the rDNA, and of the gene of the translation elongation factor (TEF)-1α. In 579 (2.56%) of 22,575 samples studied in the year 2020/2021, zoophilic dermatophytes were detectable with PCR-ELISA and/or by cultivation. In comparison, the proportion of zoophilic dermatophytes was 2.03% in the 1­year period 2014/2015, and only 1.6% in 2018/2019. The 579 zoophilic dermatophytes were identified as follows: Trichophyton (T.) benhamiae 186 (32.1%), T. mentagrophytes 173 (29.9%), T. quinckeanum 110 (19.0%), Microsporum (M.) canis 78 (13.5%), T. verrucosum 22 (3.8%), Nannizzia (N.) persicolor 8 (1.4%), T. erinacei 1 (0.2%), and T. equinum 1 (0.2%). T. benhamiae had the highest prevalence from June to September 2020, then again in December. T. quinckeanum is associated with a sharp increase in the mice population in Germany in 2020; a significant increase was found in the months September 2020 to January 2021. T. mentagrophytes had a conspicuous peak in September. Compered with that M. canis in November. Up to 50% of the dermatophytoses caused by T. mentagrophytes, T. quinckeanum, and M. canis affected children and adolescents, while in the case of T. benhamiae it was as much as two thirds. Tinea corporis was the most common, followed by tinea faciei and tinea capitis. M. canis infections affected the capillitium more frequently than the face. Zoophilic dermatophytes were increasingly isolated during the coronavirus pandemic in Germany when compared to previous year periods. In first place, the dermatophyte T. benhamiae from guinea pigs was found in children and adolescents. A significant proportion of dermatophytoses concerned adults. T. quinckeanum is an emerging pathogen in Germany with unprecedented high infection rates in 2020.


Arthrodermataceae , Canidae , Coronavirus Infections , Coronavirus , Dermatomycoses , Tinea , Animals , Guinea Pigs , Mice , Dermatomycoses/epidemiology , Pandemics , Tinea/diagnosis , Coronavirus Infections/epidemiology , Germany/epidemiology
12.
J Dtsch Dermatol Ges ; 21(6): 678-692, 2023 06.
Article En | MEDLINE | ID: mdl-37212291

Onychomycosis is a fungal infection of the fingernails and toenails. In Europe, tinea unguium is mainly caused by dermatophytes. The diagnostic workup comprises microscopic examination, culture and/or molecular testing (nail scrapings). Local treatment with antifungal nail polish is recommended for mild or moderate nail infections. In case of moderate to severe onychomycosis, oral treatment is recommended (in the absence of contraindications). Treatment should consist of topical and systemic agents. The aim of this update of the German S1 guideline is to simplify the selection and implementation of appropriate diagnostics and treatment. The guideline was based on current international guidelines and the results of a literature review conducted by the experts of the guideline committee. This multidisciplinary committee consisted of representatives from the German Society of Dermatology (DDG), the German-Speaking Mycological Society (DMykG), the Association of German Dermatologists (BVDD), the German Society for Hygiene and Microbiology (DGHM), the German Society of Pediatric and Adolescent Medicine (DGKJ), the Working Group for Pediatric Dermatology (APD) and the German Society for Pediatric Infectious Diseases (DGPI). The Division of Evidence-based Medicine (dEBM) provided methodological assistance. The guideline was approved by the participating medical societies following a comprehensive internal and external review.


Onychomycosis , Adolescent , Humans , Child , Onychomycosis/diagnosis , Onychomycosis/drug therapy , Antifungal Agents/therapeutic use , Nails , Administration, Oral , Europe
16.
J Fungi (Basel) ; 8(7)2022 Jul 21.
Article En | MEDLINE | ID: mdl-35887512

Trichophyton (T.) indotineae is a newly identified dermatophyte species that has been found in a near-epidemic form on the Indian subcontinent. There is evidence of its spread from the Indian subcontinent to a number of countries worldwide. The fungus is identical to genotype VIII within the T. mentagrophytes/T. interdigitale species complex, which was described in 2019 by sequencing the Internal Transcribed Spacer (ITS) region of ribosomal DNA of the dermatophyte. More than 10 ITS genotypes of T. interdigitale and T. mentagrophytes can now be identified. T. indotineae causes inflammatory and itchy, often widespread, dermatophytosis affecting the groins, gluteal region, trunk, and face. Patients of all ages and genders are affected. The new species has largely displaced other previously prevalent dermatophytes on the Indian subcontinent. T. indotineae has become a problematic dermatophyte due to its predominantly in vitro genetic resistance to terbinafine owing to point mutations of the squalene epoxidase gene. It also displays in vivo resistance to terbinafine. The most efficacious drug currently available for this terbinafine-resistant dermatophytoses, based on sound evidence, is itraconazole.

19.
Dermatologie (Heidelb) ; 74(12): 974-993, 2022 Dec.
Article De | MEDLINE | ID: mdl-37889305

Dermatomycoses affect free skin, hairy scalp, fingernails and toenails. In addition, oral mucosa and genital mucosa can also be affected by fungal infections. The most common pathogens causing skin fungal infections are dermatophytes. They are responsible for, among others, tinea corporis, tinea capitis and onychomycosis (tinea unguium). Mainly anthropophilic dermatophytes are found as pathogens. In the case of tinea capitis-at least in Europe and in German-speaking countries-zoophilic skin fungi must also be considered. Rarely, geophilic dermatophytes can also be isolated. Yeast infections of the skin, mostly caused by Candida albicans, primarily affect the intertriginous skin areas, for example, the groin region, but also the submammary area and the spaces between the fingers and toes. Elderly patients are often affected, but also infants and, in particular, immunocompromised patients. These patient groups are also more frequently affected by oral mucosal infections caused by Candida albicans and other Candida species. Pseudomembranous candidiasis of the oral mucosa and tongue typically affects patients with HIV/AIDS. Mold infections in dermatology are relevant in onychomycosis of the big toenail. The causative agent is usually Scopulariopsis brevicaulis. Cutaneous mold infections are rare and only occur in immunocompromised patients. The mycological diagnosis of dermatomycoses is based on the microscopic, if possible fluorescence-optical detection of fungal hyphae and spores from skin scales, nail shavings and hair roots. The culture detection of dermatophytes, yeasts and molds allows the identification of the causative fungal species, but often fails, especially in patients who have already been treated with antifungal agents. In view of the high sensitivity and specificity of the molecular methods for fungal detection compared to culture, polymerase chain reaction (PCR) must realistically be regarded as the gold standard for dermatophytosis diagnostics. However, it should not be neglected that the three pillars of diagnostics-preparation, culture, PCR-currently deliver the best results.


Dermatitis , Onychomycosis , Tinea Capitis , Aged , Infant , Humans , Skin , Candida albicans , Candida
...